A Software Solution for Advanced Friction Modeling Applied to Sheet Metal Forming

نویسنده

  • J. Hol
چکیده

In this paper, a software solution is presented for advanced friction modeling in metal forming processes, using a physically-based friction model. As input, the model requires the properties of the metal-lubricant combination used and the surface characteristics of the tooling and sheet material. As output, the friction coefficient is provided in both the boundary and mixed lubrication regime. This includes the effect of surface changes due to normal loading, sliding and straining the underlying bulk material. Adhesion and ploughing effects are accounted for to characterize friction conditions on the micro scale. To account for lubrication, hydrodynamic contact elements have been developed and integrated in the software. Pressure degrees of freedom are introduced to capture the pressure values which are computed by a finite element discretization of the 2D averaged Reynolds equation. The boundary friction model and the hydrodynamic friction model have been coupled to cover the mixed lubrication regime. The software solution, provided by Innprove Solutions, is coupled to commercial finite element packages enabling advanced friction modeling for sheet metal forming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical and Experimental Analysis and Optimization of Process Parameters of AA1050 Incremental Sheet Forming

The incremental sheet metal forming (ISMF) process is a new and flexible method that is well suited for small batch production or prototyping. This paper studies the use of the finite element method in the incremental forming process of AA1050 sheets to investigate the influence of tool diameter, vertical step size, and friction coefficient on forming force, spring-back, and thickness distribut...

متن کامل

EXPERIMENTAL AND NUMERICAL INVESTIGATION ON LASER BENDING PROCESS

Laser bending is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. In this paper, temperature distribution in a mild steel sheet metal is investigated numerically and experimentally. Laser heat source is applied through curved paths in square sheet metal parts. Finite element (FE) simulation is performed with the ABAQUS/CAE standard softwa...

متن کامل

MULTISCALE FRICTION MODELING FOR SHEET METAL FORMING Authors

The most often used friction model for sheet metal forming simulations is the relative simple Coulomb friction model. This paper presents a more advanced friction model for large scale forming simulations based on the surface change on the micro-scale. The surface texture of a material changes if two surfaces are in contact under a normal load which is an effect of flattening due to normal load...

متن کامل

Multiscale Friction Modeling for Sheet Metal Forming

The most often used friction model for sheet metal forming simulations is the relative simple Coulomb friction model. This paper presents a more advanced friction model for large scale forming simulations based on the surface change on the micro-scale. The surface texture of a material changes when two surfaces are in contact under a normal load. This is caused by flattening due to combined nor...

متن کامل

Analytical Modeling of Axi-Symmetric Sheet Metal Forming

The cup drawing is a basic deep drawing process. Thus, understanding the mechanics ofthe cup drawing process helps in determining the general parameters that affect the deep drawingprocess. There are mainly two methods of analysis; experimental and analytical/numerical.Experimental analysis can be useful in analyzing the process to determine the process parameters thatproduce a defect free prod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014